• Indonesian 9.3 Richter earthquake:
December 26, 2004 at 00 hours 58 minutes (Universal Time)
It is then with some alarm that we learn that just 44.6 hours later gamma ray telescopes orbiting the Earth picked up the arrival of the brightest gamma ray burst ever recorded!
• Gamma ray burst arrival:
December 27, 2004 at 21 hours 36 minutes (Universal Time)
This gamma ray blast was 100 times more intense than any burst that had been previously recorded, equaling the brightness of the full Moon, but radiating most of its energy at gamma ray wavelengths. Gamma ray counts spiked to a maximum in 1.5 seconds and then declined over a 5 minute period with 7.57 second pulsations. The blast temporarily changed the shape the Earth's ionosphere, distorting the transmission of long-wavelength radio signals. See stories on Space.com, BBC News, NY TImes.
Artists conception, courtesy of NASA
Astronomers have theorized that gamma ray bursts might travel in association with gravity wave bursts. In the course of their flight through space, gamma rays would be deflected by gravitational fields and would be scattered by dust and cosmic ray particles they encountered, so they would be expected to travel slightly slower than their associated gravity wave burst which would pass through space unimpeded. After a 45,000 year light-speed journey, a gamma ray burst arrival delay of 44.6 hours would not be unexpected. It amounts to a delay of just one part in 9 million. So if the gravity wave traveled at the speed of light (c), the gamma ray burst would have averaged a speed of 0.99999989 c, just 0.11 millionths slower. There is also the possibility that at the beginning of its journey the gravity wave may have had a superluminal speed; see textbox below.
Artist's conception, courtesy of NASA
Many have inquired if there might be a connection between these two events (e.g., see the Space.com article). Not thinking of the gravity wave connection, astronomers have been reluctant to admit there might be a connection since they know of no mechanism by which gamma rays by themselves could trigger earthquakes. They admit that the December 27th gamma ray burst had slightly affected the ionization state of the Earth's atmosphere, but this by itself should not have caused earthquakes. However, if a longitudinal gravity potential wave pulse were to accompany a gamma ray burst, the mystery becomes resolved. The connection between earthquakes and gamma ray bursts now becomes plausible.
In his 1983 Ph.D. dissertation, Paul LaViolette called attention to terrestrial dangers of Galactic core explosions, pointing out that the arrival of the cosmic ray superwave they produced would be signaled by a high intensity gamma ray burst which would also generate EMP effects (e.g., see Page 3). He also noted that a strong gravity wave might be expected to travel forward at the forefront of this superwave and might be the first indication of a superwave's arrival. He pointed out that such gravity waves could induce substantial tidal forces on the Earth during their passage which could induce earthquakes and cause polar axis torquing effects.
[Please note, the gravity potential gradient associated with a stellar explosion or core explosion would drop off in intensity inversely with distance traveled (according to 1/r), and would not drop off as the inverse cube of distance as some have claimed on the internet. That is, it does not have a force-distance dependence similar to the lunar tidal force. So the impact would be quite significant. The mathematics are worked out in the above reference.]In his book Earth Under Fire (as well as in his dissertation), LaViolette presents evidence showing that the superwave that passed through the solar system around 14,200 years ago had triggered supernova explosions as it swept through the Galaxy. Among these were the Vela and Crab supernova explosions whose explosion dates align with this superwave event horizon. He points out that these explosions could be explained if a gravity wave accompanied this superwave, it could have produced tidal forces which could have triggered unstable stars to explode as it passed through.
He wrote at a time when gamma ray bursts had just begun to be discovered, and when no one was concerned with them as potential terrestrial hazards. In recent years scientific opinion has come around to adopt LaViolette's concern, as can be seen in news articles discussing the SGR 1806-20 gamma ray outburst, e.g., see Space.com news story. They note that if this gamma ray burst had been as close as 10 light years it would have completely destroyed the ozone layer. By comparison, the Galactic superwaves LaViolette has postulated to have been generated as a result of an outburst of our Galaxy's core and to have impacted the Solar system during the last ice age would have impacted the solar system with a cosmic ray electron volley having an energy intensity 100 times greater than this hypothetical 10 light year distant stellar gamma ray burst. In comparision, SGR 1806-20 has been estimated to have a stellar progenitor mass of 150 solar masses, whereas our Galactic core has a mass of 2.6 million solar masses. In its present active phase, SGR 1806-20 is estimated to have a luminosity 40 million times that of the Sun, whereas during its active phase the Galactic center could reach luminosities of 400 trillion times that of the Sun. So it is understandable that if the Galactic center were to erupt, it would produce a gamma ray burst and a gravity wave far more intense than the outburst from this star.
If anything, the December 27, 2004 gamma ray burst shows us that we do not live in a peaceful celestial environment. And if the December 26th earthquake was in fact part of this same celestial event, we see that this stellar eruption has claimed many lives. For this reason, it is important that we prepare for the possibility of even stronger events in the future, the arrival of superwaves issuing from the core of our Galaxy. Like the December 26th earthquake and the December 27th gamma ray burst, the next superwave will arrive unexpectedly. It will take us by surprise.
|
|
• Current earthquakes: http://earthquake.usgs.gov/recenteqsww/Quakes/quakes_all.html • Past earthquakes: http://earthquake.usgs.gov/activity/past.htmlpast.html • Gamma ray bursts: http://grad40.as.utexas.edu/grblog.php?author=D.%20Gotz • Cosmic ray radiation intensity: http://cr0.izmiran.rssi.ru/mosc/main.htm • Gravity wave bursts (LIGO site: no posted data, just posted papers): http://www.ligo.caltech.edu/ and http://www.ligo.org/results/ • Listing of various relevant events: http://www.earthchangestv.com |
Note that almost two months passed before the December 27th gamma ray burst found its way into news media stories. If unusually intense activity were to occur in the near future as the beginning stages of a superwave arrival, it is hoped that scientists will not keep this knowledge to themselves but rather allow the global news media to disseminate the story quickly to inform the world.
|
Lazarus Long Posted: Feb 21 2005-21:23 I just thought I should put this on this thread for the record. A very interesting event occurred almost simultaneously with the Tsunami event but it appears few have noticed but this gamma ray burst almost coincided with the tectonic event (it was slightly afterward) here on Earth. I am curious if what we witnessed was a gravitational bow wave effect that preceded the actual gamma radiation as a shock-wave. Just coincidence? Could be but.... Remember the distance traveled was 50,000 lt yrs. This could be evidence to verify the critical aspects of quantum gravitational theory as a mountain of data was collected. My suspicion is that a type of Huygens Gravitational Wave effect may have preceded the actual EM *flash* by many hours or it might simply reflect the period of compression and gravitational displacement within the Neutron Stars' power surge that preceded the actual EM emission. Apparently the entire solar system was shaking from the event, in fact the entire galaxy is apparently experiencing a kind of gravitational oscillation (vibration) as this wave propagates. What if we are seeing an event that can be quantified to be slightly faster than light and being propagated just ahead of it? While the flash was noticed after the tectonic event locally it is entirely conceivable that the actual gravitation shock wave struck earlier and while no one to date has related the two events I am curious if we may also be seeing evidence of how cosmic scale events could interfere with planetary tectonics by introducing a trigger force sufficient to release the pent up energy that already exists internally within the planet. I am curious if the relationship of gravity and the event can be measured precisely in relation to the actual EM radiation emitted that we may have sufficient data and measures to test quantum gravitational theory against, which are analogous to how the Michaelson Morley experiment was used to verify Relativity Theory. |
No comments :
Post a Comment